55 research outputs found

    An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7

    Get PDF
    The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore whether an established schizophrenia-associated connectivity phenotype is replicated in a murine model, and whether positive modulation of nAChA7 receptor might pharmacologically normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a single intraperitoneal injection of either 15 mg/kg Lu AF58801 or saline. The control group comprised wild-type mice treated with saline. We performed seed-based functional connectivity analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice (saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. The main effect of Lu AF58801 was a normalization of elevated functional connectivity between prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory gating deficit-reversal effects of nAChA7R stimulation

    Genome-wide scans using archived neonatal dried blood spot samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of disease susceptible genes requires access to DNA from numerous well-characterised subjects. Archived residual dried blood spot samples from national newborn screening programs may provide DNA from entire populations and medical registries the corresponding clinical information. The amount of DNA available in these samples is however rarely sufficient for reliable genome-wide scans, and whole-genome amplification may thus be necessary. This study assess the quality of DNA obtained from different amplification protocols by evaluating fidelity and robustness of the genotyping of 610,000 single nucleotide polymorphisms, using the Illumina Infinium HD Human610-Quad BeadChip. Whole-genome amplified DNA from 24 neonatal dried blood spot samples stored between 15 to 25 years was tested, and high-quality genomic DNA from 8 of the same individuals was used as reference.</p> <p>Results</p> <p>Using 3.2 mm disks from dried blood spot samples the optimal DNA-extraction and amplification protocol resulted in call-rates between 99.15% – 99.73% (mean 99.56%, N = 16), and conflicts with reference DNA in only three per 10,000 genotype calls.</p> <p>Conclusion</p> <p>Whole-genome amplified DNA from archived neonatal dried blood spot samples can be used for reliable genome-wide scans and is a cost-efficient alternative to collecting new samples.</p

    Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome.

    Get PDF
    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression.The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement No. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/ 2007–2013). The Behavioural and Clinical Neuroscience Institute is co-funded by the Medical Research Council and the Df(h22q11)/+ and the Wellcome Trust.This is the final version of the article. It first appeared from OUP at http://dx.doi.org/10.1093/cercor/bhw229

    A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission

    Get PDF
    Abstract 1q21.1 hemizygous microdeletion is a copy number variant leading to eightfold increased risk of schizophrenia. In order to investigate biological alterations induced by this microdeletion, we generated a novel mouse model (Df(h1q21)/+) and characterized it in a broad test battery focusing on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1 receptor agonist SKF-81297 revealed no differences in induced locomotor activity compared to wild-type mice, but Df(h1q21)/+ mice showed increased sensitivity to the DA D2 receptor agonist quinpirole and the D1/D2 agonist apomorphine. Electrophysiological characterization of DA neuron firing in the ventral tegmental area revealed more spontaneously active DA neurons and increased firing variability in Df(h1q21)/+ mice, and decreased feedback reduction of DA neuron firing in response to amphetamine. In a range of other assays, Df(h1q21)/+ mice showed no difference from wild-type mice: gross brain morphology and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced head-to tail length, which is reminiscent of the short stature reported in humans with 1q21.1 deletion. With aspects of both construct and face validity, the Df(h1q21)/+ model may be used to gain insight into schizophrenia-relevant alterations in dopaminergic transmission

    Impact of COVID-19 Pandemic on Sleep Quality, Stress Level and Health-Related Quality of Life-A Large Prospective Cohort Study on Adult Danes

    Get PDF
    The everyday lives of Danish inhabitants have been affected by the COVID-19 pandemic, e.g., by social distancing, which was employed by the government in March 2020 to prevent the spread of SARS-CoV-2. Moreover, the pandemic has entailed economic consequences for many people. This study aims to assess changes in physical and mental health-related quality of life (MCS, PCS), in stress levels, and quality of sleep during the COVID-19 pandemic and to identify factors that impact such changes, using a prospective national cohort study including 26,453 participants from the Danish Blood Donor Study who answered a health questionnaire before the pandemic and during the pandemic. Descriptive statistics, multivariable linear and multinomial logistic regression analyses were applied. A worsening of MCS and quality of sleep was found, and an overall decrease in stress levels was observed. PCS was decreased in men and slightly increased in women. The extent of health changes was mainly affected by changes in job situation, type of job, previous use of anti-depressive medication and the participants’ level of personal stamina. Thus, living under the unusual circumstances that persisted during the COVID-19 pandemic has had a negative impact on the health of the general population. This may, in time, constitute a public health problem

    Comparison of quantitative trait loci methods:Total expression and allelic imbalance method in brain RNA-seq

    Get PDF
    BackgroundOf the 108 Schizophrenia (SZ) risk-loci discovered through genome-wide association studies (GWAS), 96 are not altering the sequence of any protein. Evidence linking non-coding risk-SNPs and genes may be established using expression quantitative trait loci (eQTL). However, other approaches such allelic expression quantitative trait loci (aeQTL) also may be of use.MethodsWe applied both the eQTL and aeQTL analysis to a biobank of deeply sequenced RNA from 680 dorso-lateral pre-frontal cortex (DLPFC) samples. For each of 340 genes proximal to the SZ risk-SNPs, we asked how much SNP-genotype affected total expression (eQTL), as well as how much the expression ratio between the two alleles differed from 1:1 as a consequence of the risk-SNP genotype (aeQTL).ResultsWe analyzed overlap with comparable eQTL-findings: 16 of the 30 risk-SNPs known to have gene-level eQTL also had gene-level aeQTL effects. 6 of 21 risk-SNPs with known splice-eQTL had exon-aeQTL effects. 12 novel potential risk genes were identified with the aeQTL approach, while 55 tested SNP-pairs were found as eQTL but not aeQTL. Of the tested 108 loci we could find at least one gene to be associated with 21 of the risk-SNPs using gene-level aeQTL, and with an additional 18 risk-SNPs using exon-level aeQTL.ConclusionOur results suggest that the aeQTL strategy complements the eQTL approach to susceptibility gene identification

    The Danish 22q11 research initiative

    Get PDF
    Background: Neurodevelopmental brain disorders such as schizophrenia, autism and attention deficit hyperactivity disorder are complex disorders with heterogeneous etiologies. Schizophrenia and autism are difficult to treat and often cause major individual suffering largely owing to our limited understanding of the disease biology. Thus our understanding of the biological pathogenesis needs to be substantiated to enable development of more targeted treatment options with improved efficacy. Insights into the pre-morbid disease dynamics, the morbid condition and the underlying biological disease mechanisms may come from studies of subjects with homogenous etiologies. Breakthroughs in psychiatric genetics have shown that several genetic anomalies predispose for neurodevelopmental brain disorders. We have established a Danish research initiative to study the common microdeletion at chromosome 22q11.2, which is one of the genetic anomalies that confer high risk of schizophrenia, autism and attention deficit hyperactivity disorder. Methods/design: The study applies a "cause-to-outcome" strategy to identify pre-morbid pathogenesis and underlying biological disease mechanisms of psychosis and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional effects across behavioral and neurophysiological traits of the 22q11 deletion in a recruited sample of Danish individuals. Discussion: Identification of predictive pre-morbid clinical, cognitive, functional and structural brain alterations in 22q11 deletion carriers may alter current clinical practice from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome of the pharmacological interventions in psychiatry

    Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 micro-deletion syndrome – a study in male mice

    Get PDF
    Background: The hemizygous 22q11.2 micro-deletion is a common copy number variant in humans. The deletion confers high risk of neurodevelopmental disorders including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods: We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on the most comprehensive study undertaken in 22q11.2DS models. The study was conducted in male mice. Results: We found elevated post-pubertal NMDA receptor antagonist induced hyper-locomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR was resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal (DStr) elevations of the dopamine metabolite DOPAC and increased DStr expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. Limitations: The 22q11.2 micro-deletion has incomplete penetrance in humans and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors which may unmask latent psychopathology. Conclusion: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the aetiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.The research leading to these results was conducted as part of NEWMEDS and received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement n° 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). This work was further supported by grants from the Danish Advanced Technology Foundation (File no. 001-2009-2) and by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)

    Translating genome-wide association findings into new therapeutics for psychiatry

    Get PDF
    Genome-wide association studies (GWAS) in psychiatry, once they reach sufficient sample size and power, have been enormously successful. The Psychiatric Genomics Consortium (PGC) aims for mega-analyses with sample sizes that will grow to (cumulatively) >1 million individuals in the next 5 years. This should lead to hundreds of new findings for common genetic variants across nine psychiatric disorders studied by the PGC. The new targets discovered by GWAS have the potential to restart largely stalled psychiatric drug development pipelines, and the translation of GWAS findings into the clinic is a key aim of the recently funded phase 3 of the PGC. This is not without considerable technical challenges. These approaches complement the other main aim of GWAS studies on risk prediction approaches for improving detection, differential diagnosis, and clinical trial design. This paper outlines the motivations, technical and analytical issues, and the plans for translating PGC3 findings into new therapeutics

    The schizophrenia associated BRD1 gene regulates behavior, neurotransmission, and expression of schizophrenia risk enriched gene sets in mice

    Get PDF
    BackgroundThe schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative.MethodsThis study assessed the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1+/- mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus on schizophrenia-relevant parameters.ResultsBrd1+/- mice displayed cerebral histone H3K14 hypo-acetylation and a broad range of behavioral changes with translational relevance to schizophrenia. These behaviors were accompanied by striatal dopamine/serotonin abnormalities and cortical excitation-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNAseq analyses of cortical and striatal micropunches from Brd1+/- and wild-type mice revealed differential expression of genes enriched for schizophrenia risk including several schizophrenia GWAS risk genes (e.g. calcium channel subunits (Cacna1c and Cacnb2), cholinergic muscarinic receptor 4 (Chrm4), dopamine receptor D2 (Drd2), and transcription factor 4 (Tcf4)). Integrative analyses further found differentially expressed genes to cluster in functional networks and canonical pathways associated with mental illness and molecular signaling processes (e.g. glutamatergic, monaminergic, calcium, cAMP, DARPP-32, and CREB signaling).ConclusionsOur study bridges the gap between genetic association and pathogenic effects and yields novel insights into the unfolding molecular changes in the brain of a new schizophrenia model that incorporates genetic risk at three levels: allelic, chromatin interactomic, and brain transcriptomic
    corecore